An asymptotically tight bound on the adaptable chromatic number

نویسندگان

  • Michael Molloy
  • Giovanna Thron
چکیده

The adaptable chromatic number of a multigraph G, denoted χa(G), is the smallest integer k such that every edge labeling of G from [k] = {1, 2, · · · , k} permits a vertex coloring of G from [k] such that no edge e = uv has c(e) = c(u) = c(v). Hell and Zhu proved that for any multigraph G with maximum degree ∆, the adaptable chromatic number is at most lp e(2∆− 1) m . We strengthen this to the asymptotically best possible bound of (1 + o(1)) √ ∆.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Adaptable Chromatic Number and the Chromatic Number

We prove that the adaptable chromatic number of a graph is at least asymptotic to the square root of the chromatic number. This is best possible. Consider a graph G where each edge of G is assigned a colour from {1, ..., k} (this is not necessarily a proper edge colouring). A k-adapted colouring is an assignment of colours from {1, ..., k} to the vertices of G such that there is no edge with th...

متن کامل

Vertex coloring acyclic digraphs and their corresponding hypergraphs

We consider vertex coloring of an acyclic digraph ~ G in such a way that two vertices which have a common ancestor in ~ G receive distinct colors. Such colorings arise in a natural way when bounding space for various genetic data for efficient analysis. We discuss the corresponding down-chromatic number and derive an upper bound as a function of D(~ G), the maximum number of descendants of a gi...

متن کامل

Ju n 20 07 Vertex coloring acyclic digraphs and their corresponding hypergraphs ∗

We consider vertex coloring of an acyclic digraph ~ G in such a way that two vertices which have a common ancestor in ~ G receive distinct colors. Such colorings arise in a natural way when bounding space for various genetic data for efficient analysis. We discuss the corresponding down-chromatic number and derive an upper bound as a function of D(~ G), the maximum number of descendants of a gi...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

A new approach to compute acyclic chromatic index of certain chemical structures

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2012